Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat.

نویسندگان

  • C Schulze
  • J A Firth
چکیده

The morphology and molecular composition of intercellular adherens junctions have most frequently been described in epithelial cells and the fascia adhaerens of the intercalated disc. A group of cytoplasmic molecules is known to be associated with adherens junctions. The intercellular bond is mediated by cadherins which bridge the cells by homophilic binding. Recently, endothelial cells have also been shown to form intercellular junctions of the adherens-type. However, they are morphologically less distinct and little is known about their molecular components. In this study we report the localization of some adherens junction components in intact microvessels of the blood-brain barrier in the rat. We used antibodies raised against alpha-actinin, vinculin, zyxin, cadherin (antipan-cadherin antibody) and A-CAM (N-cadherin) in immunohistochemical experiments at light and electron microscopical levels. Microvessel walls reacted positively for all antigens throughout postnatal development. All antigens were localised, though not necessarily exclusively, to interendothelial junctions. At the ultrastructural level, pan-cadherin reactivity was present throughout the entire length of the cleft. These results could mean that in blood-brain barrier endothelial cells the complex tight junction is embedded in an adherens junction which occupies the entire length of the cleft.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB). Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to...

متن کامل

Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke.

BACKGROUND This review deals with the role of calcium in endothelial cell junctions of the blood-brain barrier (BBB). Calcium is critical for adherens junction function, but it appears that calcium is also important in regulating tight junction function necessary for the barrier characteristics of cerebral microvessels. SUMMARY OF REVIEW The BBB is critical for brain homeostasis and is locate...

متن کامل

Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins ...

متن کامل

Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke.

Intracerebral hemorrhagic stroke and vascular dementia are age- and hypertension-associated manifestations of human cerebral small vessel disease (SVD). Cerebral microvessels are formed by endothelial cells (ECs), which are connected through tight junctions, adherens junctions, and stabilizing basement membrane structures. These endothelial connections ensure both vessel stability and blood-bra...

متن کامل

Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood-brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, surv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 104 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1993